
STAYSAFU
AUDIT
August 3rd, 2022

HODL

StaySAFU security assessment

TABLE OF CONTENTS

I. SUMMARY

II. OVERVIEW

III. FINDINGS

A. CENT-1: Centralization of major privileges

B. EXT-1: External protocol dependencies

C. THRE-1: Missing threshold checks

D. THRE-2: Missing zero address checks

E. MSG-1: Missing event emits

F. BLOC-1: Use of block.timestamp

G. BLOC-2: Use of block.number

H. COMP-1: Unfixed version of compiler

I. GAS-1: Unoptimized function type

J. BP-1: Function naming convention

K. BP-2: Use of enum values in place of IDs

L. BP-3: Undescriptive variable names

M. MSG-2: Limited NatSpec comments

N. FUNC-1: Unused functions

O. FUNC-2: Redundant function

2

StaySAFU security assessment

IV. FINDINGS - NEW FUNCTIONS

A. BP-1: Grouped functions

VI. DISCLAIMER

3

StaySAFU security assessment

AUDIT SUMMARY

This report was written for HODL ($HODL) in order to find flaws and

vulnerabilities in the HODL project's source code, as well as any contract

dependencies that weren't part of an officially recognized library.

A comprehensive examination has been performed, utilizing Static

Analysis, Manual Review, and HODL Deployment techniques. The

auditing process pays special attention to the following considerations:

❖ Testing the smart contracts against both common and uncommon

attack vectors

❖Assessing the codebase to ensure compliance with current best

practices and industry standards

❖ Ensuring contract logic meets the specifications and intentions of

the client

❖Cross referencing contract structure and implementation against

similar smart contracts produced by industry leaders

❖ Through line-by-line manual review of the entire codebase by

industry expert

4

StaySAFU security assessment

AUDIT OVERVIEW

PROJECT SUMMARY

Project name HODL

Description HODL is an BEP20 token which operates on

the Binance Smart Chain (BSC) Network as a

dual-reward token offering both BNB rewards

and reflections to its investors (HODLers),

along with staking, farming, NFTs, and its

own DEX.

Platform Binance Smart Chain

Language Solidity

Codebase https://bscscan.com/address/0x1c8c15ad376
fe44ae487268abe780ca9d00ca132#code
*Note: This is the implementation contract
address of the HODL Token that was initially
audited
https://bscscan.com/address/0xFf5B2971405
22394b1578b04Da13A9E797cCeF2E#code
*Note: Line numbers within the report are
based on this contract.

MD5 Hash | File Name
54b53976c23a4b043b496bc33b98b823 HODLv3.sol

https://bscscan.com/address/0xb6875f2e79d8e8d6cf76
8c0a045788e5b3070ca4#code
*Note, This is the current implementation contract
address of the HODL Token. The 12 new functions
introduced in this version were also audited.

5

https://bscscan.com/address/0x1c8c15ad376fe44ae487268abe780ca9d00ca132#code
https://bscscan.com/address/0x1c8c15ad376fe44ae487268abe780ca9d00ca132#code
https://bscscan.com/address/0xbd0a99cb012611345425ba2e6d5228dc28f91427#code
https://bscscan.com/address/0xbd0a99cb012611345425ba2e6d5228dc28f91427#code
https://bscscan.com/address/0xb6875f2e79d8e8d6cf768c0a045788e5b3070ca4#code
https://bscscan.com/address/0xb6875f2e79d8e8d6cf768c0a045788e5b3070ca4#code

StaySAFU security assessment

FINDINGS SUMMARY

Vulnerability Total Resolved

● Critical 0 0

● Major 0 0

● Medium 3 1

● Minor 5 3

● Informational 8 4

6

StaySAFU security assessment

EXECUTIVE SUMMARY

HODL is a DeFi project built on the Binance Smart Chain (BSC). HODL is

revolutionary and constantly innovating to drive more rewards and value

to all holders. It was the first project to reward its holders with BNB and

reflections just for holding and has set the record for the biggest payouts

of all time. (HODL, n.d.)

At the heart of HODL is a highly-innovative smart contract which

captures tax revenues from buys, sells and transfers of the token. Our sell

bot liquifies these tokens converting them into BNB and then places the

funds into the reward pool. By holding HODL you can collect your share

of the reward pool every 7-days and will be sent reflections throughout.

(HODL, n.d.)

There have been no major or critical issues related to the codebase and

all findings listed here are minor or informational. The medium security

issues are the dependence on a decentralized exchange platform,

centralization of privileges, and missing threshold checks. The missing

thresholds check was resolved.

7

StaySAFU security assessment

AUDIT FINDINGS

Code Title Severity

CENT-1 Centralization of major privileges ● Medium

EXT-1 External protocol dependencies ● Medium

THRE-1 Missing threshold checks ⬤ ● Medium

THRE-2 Missing zero address checks ⬤ ● Minor

MSG-1 Missing event emits ⬤ ● Minor

BLOC-1 Use of block.timestamp ● Minor

BLOC-2 Use of block.number ⬤ ● Minor

COMP-1 Unfixed version of compiler ● Minor

8

StaySAFU security assessment

GAS-1 Unoptimized function type ⬤ ● Informational

BP-1 Function naming convention ⬤ ● Informational

BP-2 Use of enum values in place of IDs ● Informational

BP-3 Undescriptive variable names ⬤ ● Informational

MSG-2 Limited NatSpec comments ● Informational

FUNC-1 Unused functions ● Informational

FUNC-2 Redundant function ⬤ ● Informational

Legend:

⬤ -> Resolved

9

StaySAFU security assessment

CENT-1 | Centralization of major privileges

Description

The onlyOwner modifier in the smart contract(s) give major privileges

over them (including/excluding addresses from rewards, updating fees)*.

This can be a problem, in the case of a hack, an attacker who has taken

possession of this privileged account could damage the project and the

investors.

*This list is not exhaustive but presents the most sensitive points

Recommendation

We recommend at least to use a multi-sig wallet as the owner address,

and at best to establish a community governance protocol to avoid such

centralization.

See: https://solidity-by-example.org /app/multi-sig-wallet/

10

StaySAFU security assessment

EXT-1 | Dependence to an external protocol

Description

The contract serves as an underlying entity to interact with third party

Uniswap/PancakeSwap protocols. The scope of the audit would treat this

third party entity as black box and assume it is fully functional. However

in the real world, third parties may be compromised and may have led to

assets lost or stolen.

Recommendation

We encourage the team to constantly monitor the security level of the

entire Uniswap/PancakeSwap project, as the security of the token is

highly dependent on the security of the decentralized exchange

platform.

11

StaySAFU security assessment

THRE-1 | Missing threshold checks | ⬤ Resolved

Description

Functions which can change sensitive variables within HODL’s contract

do not contain threshold checks to ensure these variables are not

changed to unreasonable values. This includes fees and max tx amount.

As such it is important to add a threshold to prevent an attacker from

setting max transaction amount as 0 or fees as 100% easily. Key

examples of Identified functions with this issue have been listed below:

❖ setTaxFeePercent -> Line 1282

❖ setLiquidityFeePercent -> Line 1286

❖ setMaxTxPercent* -> Line 1681

❖ changeSelltax* -> Line 1977

❖ changeBuytax* -> Line 1982

❖ changeTransfertax* -> Line 1986

❖Changebnbclaimtax > Line 1996

❖ changerewardHardcap -> Line 2016

❖ changeclaimBNBLimit -> Line 2037

❖ changereinvestLimit > Line 2041

❖ changeBNBstackingLimit -> Line 2061

Recommendation

We recommend adding threshold checks using require statements for

each of the identified functions above and other functions with this issue.
12

StaySAFU security assessment

THRE-2 | Missing zero address checks | ⬤ Resolved

Description

Some functions which change sensitive addresses are missing checks to

prevent them from being changed to the zero address. Functions found

with this issue are listed below:

❖ initOwner -> Line: 298

❖ changereservewallet -> Line: 1941

❖ changemarketingwallet -> Line: 1945

❖ changetriggerwallet -> Line: 1949

❖migrateBnb -> Line: 1968

❖ changeHODLMasterChef -> Line: 2045

❖ changeStackingWallet -> Line: 2049

OpenZeppelin has standardized the use of zero address checks in

functions which change sensitive address variables. This is to prevent

accidental loss of privileged access and/or functionality within a project.

Recommendation

We recommend changing these functions to include a zero address

check. An example can be seen in the transferOwnership function in

Ownable.sol.

Source: openzeppelin-contracts/Ownable.sol at master

13

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol

StaySAFU security assessment

MSG-1 | Missing event emits | ⬤ Resolved

Description

Some functions within HODL’s contracts modify sensitive variables

without emitting an event. This issue includes functions which modify

fees such as setTaxFeePercent and setLiquidityFeePercent. Examples of

functions with this issue are listed below:

❖ setTaxFeePercent -> Line 1282

❖ setLiquidityFeePercent -> Line 1286

❖ setMaxTxPercent -> Line 1681

❖ changerewardCycleBlock -> Line 1937

❖ changeThreshHoldTopUpRate -> Line 1973

❖ changeSelltax -> Line 1977

❖ changeBuytax -> Line 1982

❖ changeTransfertax -> Line 1986

❖ changeminTokenNumberToSell -> Line 2006

❖ changeminTokenNumberUpperlimit -> Line 2011

❖ changerewardHardcap -> Line 2016

Recommendation

We recommend amending these functions to include event emits to

ensure transparency with users.

14

StaySAFU security assessment

BLOC-1 | Use of block.timestamp

Description

The use of block.timestamp can be problematic. The timestamp can be

partially manipulated by the miner (see https://cryptomarketpool.com/

block-timestamp-manipulation-attack/).

Recommendation

We fully understand that the use of block.timestamp within the HODL

Protocol is required for certain functionality such as the redemption of

rewards. Nevertheless, it is still useful to point out this kind of potential

security problem.

15

https://cryptomarketpool.com/

StaySAFU security assessment

BLOC-2 | Use of block.number | ⬤ Resolved

Description

The use of block.number can be problematic. The timestamp can be

partially manipulated by the miner (see https://cryptomarketpool.com/

block-timestamp-manipulation-attack/). Since the timestamp of a block

cannot be fully trusted, the exact block counting at an exact timestamp

cannot be fully trusted.

Recommendation

We fully understand that the use of block.number within the HODL

Protocol is required for the functionality of the random function (line

680). Nevertheless, it is still useful to point out this kind of potential

security problem.

16

https://cryptomarketpool.com/

StaySAFU security assessment

COMP-1 | Unfixed version of compiler

Description

HODL token’s contract does not have locked compiler versions, meaning

a range of compiler versions can be used. This can lead to differing

bytecodes being produced depending on the compiler version, which

can create confusion when debugging as bugs may be specific to a

specific compiler version(s).

Recommendation

To rectify this, we recommend setting the compiler to a single version,

the lowest version tested to be compatible with the code, an example of

this change can be seen below.

pragma solidity 0.6.8;

17

StaySAFU security assessment

GAS-1 | Unoptimized function type | ⬤ Resolved

Description

Throughout HODL’s contracts some functions are of type public although

they are never called within the contract. External functions require

significantly less gas to call. Examples of such found functions are listed

below:

❖ excludeFromReward -> Line 1229

❖ excludeFromFee -> Line 1274

❖ includeInFee -> Line 1278

❖ setSwapAndLiquifyEnabled -> Line 1290

❖ isExcludedFromFee -> Line 1429

❖ setMaxTxPercent -> Line 1681

❖ setExcludeFromMaxTx -> Line 1686

❖ redeemRewards -> Line 1711

❖ triggerSwapAndLiquify -> Line 1897

Recommendation

We recommend reviewing each of the functions listed above and others

like them within the contract, and where possible switch their type from

public to external.

18

StaySAFU security assessment

BP-1 | Function naming convention | ⬤ Resolved

Description

Some names of functions within HODL’s contract don't follow best

practices. This hinders the contracts readability, especially for non

english speakers. Examples of such functions have been listed below.

❖ changereservewallet -> Line: 1941

❖ changemarketingwallet -> Line: 1945

❖ changetriggerwallet -> Line: 1949

❖ reflectionfeestartstop -> Line: 1954

❖ changereinvestLimit -> Line 2041

Recommendation

We recommend changing the name of these functions to use camel case

as is standard.

Source: https://docs.soliditylang.org/en/v0.8.14/style-guide.html

19

https://docs.soliditylang.org/en/v0.8.14/style-guide.html

StaySAFU security assessment

BP-2 | Use of enum values in place of IDs

Description

Throughout HODL’S contracts, fixed arrays are used to store distinct

variables. An example of such an array is path (swapTokensForEth, line

739), which is an address array of size 2. This array is only used to store

address(this), and router address respectively such that path[0] would

return the address(this) address. It is industry standard to use enum

values for such arrays of fixed size and use. This improvement helps in

maintainability. Other functions with this issue are listed below:

❖ swapETHForTokens -> Line 759

❖ swapTokensForTokens -> Line 782

❖ getAmountsout -> Line 804

Recommendation

We recommend In place of numerical array index IDs, (0, 1 in the

example above), to declare an enum struct and use these values instead.

As can be seen in the example below, this change can make

development and code review clearer.

//Example enum declaration

enum PATH_ID { L_ADDRS, P_ADDRS }

//Example enum use

require(path[PATH_ID.L_ADDRS] != address(0), ”Zero address”)

20

StaySAFU security assessment

BP-3 | Undescriptive variable names | ⬤ Resolved

Description

The names of variables with the function calcReward (line 891) are non

descriptive primarily consisting of single character names. This issue

goes against naming conventions and makes the code difficult to

understand thus reducing maintainability.

Recommendation

We recommend modifying variable names to be more descriptive to

their purpose. Single character variables should only be used as an index

within loops.

See: https://docs.soliditylang.org/en/v0.8.14/style-guide.html

21

https://docs.soliditylang.org/en/v0.8.14/style-guide.html

StaySAFU security assessment

MSG-2 | Limited NatSpec comments

Description

Throughout HODL’s contracts many functions remain uncommented.

This can make understanding the code’s functionality difficult for

developers and users (if the code is open source) thus reducing

maintainability.

Recommendation

We recommend using NetSpec standard comments throughout all of

HODL’s contracts.

See:

https://docs.soliditylang.org/en/v0.5.17/style-guide.html?highlight=nats

pec%23natspec

22

https://docs.soliditylang.org/en/v0.5.17/style-guide.html?highlight=natspec%23natspec
https://docs.soliditylang.org/en/v0.5.17/style-guide.html?highlight=natspec%23natspec

StaySAFU security assessment

FUNC-1 | Unused functions

Description

Multiple functions within HODL’s contract are defined as private or

internal but are never called within the contract. This wastes contract

space as there is a maximum size a contract can have. Functions found

with this issue have been listed below:

❖ _msgData -> Line 140

❖ sendValue -> Line 162

❖ functionCall -> Line 176

❖ functionCallWithValue -> Line 191

❖ random -> Line 680*

❖ quote -> Line 974

Recommendation

We recommend removing these functions from the contract.

*The “random” function has been removed in the latest version of the

contract.

23

StaySAFU security assessment

FUNC-2 | Redundant function | ⬤ Resolved

Description

The function initOwner (line 298) isn’t part of the official OpenZeppelin

Ownable.sol contract. This function doesn’t provide any functionality to

the contract as transferOwnership (line 317) can be used in its place.

Recommendation

We recommend removing this redundant function from the contract and

use transferOwnership in its place.

24

StaySAFU security assessment

AUDIT FINDINGS - NEW FUNCTIONS

The scope of these issues are limited to the 12 new functions introduced

in the latest version of the contract. The list of these functions can be

seen below.

❖ rawFulfillRandomWords

❖ verifyCallResultFromTarget

❖ includeExcludeFromFee

❖ doSwapAndLiquify

❖ changeAnyValue

❖ changeAnyAddress

❖ enableDisableAnyFunction

❖ fulfillRandomWords

❖ burnTokens

❖ getAllTickets

❖ requestRandomWords

❖ evaluatePendingLottery

25

StaySAFU security assessment

Code Title Severity

BP-1 Grouped function ● Informational

26

StaySAFU security assessment

BP-1 | Grouped function

Description

Functions within HODL’s contract perform multiple distinct functionalities

and what operation is performed is dependent on an uint256 parameter

and a series of if statements. This can be an issue as having such a single

function to control fee changes or address changes can lead to the

wrong fee, or address variable being changed if a developer inputs the

incorrect uint parameter. Functions which have this issue are listed

below.

❖ changeAnyValue | line -> 2518

❖ changeAnyAddress | line -> 2589

❖ enableDisableAnyFunction | line -> 2612

Recommendation

We understand that having a single function to control groups of state

variable changes can reduce contract size. However, we recommend

having a system that is less prone to error such as comparing strings

(through keccak256) instead of using uint to decide what operation is

performed.

27

StaySAFU security assessment

DISCLAIMER

This report is subject to the terms and conditions (including

without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services

Agreement, or the scope of services, and terms and

conditions provided to the Company in connection with

the Agreement.

This report provided in connection with the Services set

forth in the Agreement shall be used by the Company only

to the extent permitted under the terms and conditions set

forth in the Agreement.

This report may not be transmitted, disclosed, referred to

or relied upon by any person for any purposes without

StaySAFU's prior written consent.This report is not, nor

should be considered, an “endorsement” or “disapproval”

of any particular project or team. This report is not, nor

should be considered, an indication of the economics or

value of any “product” or “asset” created by any team or

project that contracts StaySAFU to perform a security

assessment.

This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology

analyzed, nor do they provide any indication of the

technologies proprietors, business, business model or

legal compliance. This report should not be used in any way

to make decisions around investment or involvement with

28

StaySAFU security assessment

any particular project.

This report in no way provides investment advice, nor

should be leveraged as investment advice of any sort. This

report represents an extensive assessing process intending

to help our customers increase the quality of their code

while reducing the high level of risk presented by

cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a

high level of ongoing risk.

StaySAFU's position is that each company and individual

are responsible for their own due diligence and continuous

security. StaySAFU's goal is to help reduce the attack

vectors and the high level of variance associated with

utilizing new and consistently changing technologies, and

in no way claims any guarantee of security or fun.

29

