

Overview

The task was to conduct a Smart Contract Manual Code Review & Security Analysis for a

Solidity file. The objective of the assessment was to measure the security posture and

identify and present any vulnerabilities discovered.

Target(s)

The scope of the test included the following in-scope information assets:

● Hodlv3.sol

Timetable

The following testing timetable is shown below:

● Test Start: 11/9/2021

● Test End: 11/9/2021

Project Scope

The scope of the project is a smart contract. I have scanned this smart contract for

commonly known and more specific vulnerabilities, below are those considered (the full list

includes but is not limited to):

● Reentrancy

● Timestamp Dependence

● Gas Limit and Loops

● DoS with (Unexpected) Throw

● DoS with Block Gas Limit

● Transaction-Ordering Dependence

● Byte array vulnerabilities

● Style guide violation

● Transfer forwards all gas

● ERC20 API violation

● Malicious libraries

● Compiler version not fixed

● Unchecked external call - Unchecked math

● Unsafe type inference

● Implicit visibility level

Summary
I performed a manual audit, which was completed with MythX, Mythril, Slither and remix

IDE. All issues found during analysis were reviewed, and important vulnerabilities are

presented in the “Findings” section.

As a result of this test, four (4) vulnerabilities were identified. Three (3) of the findings were

identified to be a low-level vulnerability, and one (1) was a best-practice recommendation.

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit and can lead

to asset loss or data manipulations.

High High-level vulnerabilities are difficult to exploit; however, they also have

a significant impact on smart contract execution, e.g., public access to

crucial functions.

Medium Medium-level vulnerabilities are important to fix; however, they can't

lead to asset loss or data manipulations.

Low Low-level vulnerabilities are mostly related to outdated, unused, etc.

code snippets that can't have a significant impact on execution.

Lowest/Best

Practice

Lowest-level vulnerabilities, code style violations, and info statements

can't affect smart contract execution and can be ignored.

Audit Overview
The table below is designed to provide a view of all the identified findings and their

respective risk rating. Please see the following section for a detailed listing of the identified

findings.

Finding Title Instances Rating

1. A floating pragma is set 4 Low

2. Potential use of “block.number as a

source of randomness

1 Low

3. Use of “t.x origin” as a part of

authorization control

1 Low

4. State variable is not set 3 Best Practice

Finding(s)

1. Floating pragma is set Low

Description:

Contracts should be deployed with the same compiler version and flags that they have
been tested with thoroughly. Pragma statements can be allowed to float when a contract is
intended for consumption by other developers.

Impact:

Locking the pragma helps to ensure that contracts do not accidentally get deployed using
an outdated compiler version that might introduce bugs that affect the contract system
negatively.

Finding Comments:

The current pragma Solidity directive is “>=0.6.8”. Consider known bugs for the compiler
version(s) that are chosen.

● L: 3
● L: 960
● L: 1194
● L: 1262

Recommendations:

It is recommended to specify a fixed compiler version to ensure that the bytecode
produced does not vary between builds. This is especially important if you rely on
bytecode-level verification of the code.

2. Potential use of "block.number" as source of randomness Low

Description:

The ability to generate random numbers is very helpful in all kinds of applications. The
environment variable "block.number" looks like it might be used as a source of
randomness.

Impact:

Note that the values of variables like coinbase, gaslimit, block number and timestamp are
predictable and can be manipulated by a malicious miner. Also keep in mind that attackers
know hashes of earlier blocks.

Finding Comments:

N/A

Recommendations:

Don't use any of those environment variables as sources of randomness and be aware that
use of these variables introduces a certain level of trust into miners.

3. Use of "tx.origin" as a part of authorization control Low

Description:

“.tx.origin” is a global variable in Solidity which returns the address of the account that sent
the transaction. Using the variable for authorization could make a contract vulnerable if an
authorized account calls into a malicious contract.

Impact:

Note that using "tx.origin" as a security control might cause a situation where a user
inadvertently authorizes a smart contract to perform an action on their behalf.

Finding Comments:

The tx.origin environment variable has been found to influence a control flow decision.

Recommendations:

It is recommended to use "msg.sender" instead.

4. State variable visibility is not set Best Practice

Description:

It is best practice to set the visibility of state variables explicitly. Other possible visibility
settings are public and private.

Impact:

Labeling the visibility explicitly makes it easier to catch incorrect assumptions about who
can access the variable.

Finding Comments:

● Default visibility for "inSwapAndLiquify" is internal
● Default visibility for "isBlacklisted" is internal
● Default visibility for "userWalletAllowance" is internal

Recommendations:

Variables can be specified as being public, internal, or private. Explicitly define visibility for
all state variables.

Conclusion
I was given a smart contract file and have used all the latest static and dynamic tools and

manual observations to review everything in the given timeframe. Upon final review, I

found 3 (three) low-level vulnerabilities and 1 (one) best-practice recommendation. Overall,

the security state of the reviewed contract is “well-secured”.

Disclaimer Notice
THIS DOCUMENT MAY CONTAIN CONFIDENTIAL INFORMATION ABOUT ITS SYSTEMS AND

INTELLECTUAL PROPERTY OF THE CUSTOMER AS WELL AS INFORMATION ABOUT

POTENTIAL VULNERABILITIES AND METHODS OF THEIR EXPLOITATION. THE REPORT

CONTAINING CONFIDENTIAL INFORMATION CAN BE USED INTERNALLY BY THE

CUSTOMER OR IT CAN BE DISCLOSED PUBLICLY AFTER ALL VULNERABILITIES ARE FIXED

- UPON DECISION OF THE CUSTOMER.

